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Binary neural network (BNN), where both the weight and the activation values are represented with one bit,
provides an attractive alternative to deploy highly efficient deep learning inference on resource-constrained
edge devices. However, our investigation reveals that, to achieve satisfactory accuracy gains, state-of-the-art
(SOTA) BNNs, such as FracBNN and ReActNet, usually have to incorporate various auxiliary floating-point
components and increase the model size, which in turn degrades the hardware performance efficiency. In this
paper, we aim to quantify such hardware inefficiency in SOTA BNNs and further mitigate it with negligible
accuracy loss. First, we observe that the auxiliary floating-point (AFP) components consume an average of
93% DSPs, 46% LUTs, and 62% FFs, among the entire BNN accelerator resource utilization. To mitigate such
overhead, we propose a novel algorithm-hardware co-design, called FuseBNN, to fuse those AFP operators
without hurting the accuracy. On average, FuseBNN reduces AFP resource utilization to 59% DSPs, 13% LUTs,
and 16% FFs. Second, SOTA BNNs often use the compact MobileNetV1 as the backbone network but have to
replace the lightweight 3×3 depth-wise convolution (DWC) with the 3×3 standard convolution (SC, e.g., in
ReActNet and our ReActNet-adapted BaseBNN) or even more complex fractional 3×3 SC (e.g., in FracBNN)
to bridge the accuracy gap. As a result, the model parameter size is significantly increased and becomes
2.25× larger than that of the 4-bit direct quantization with the original DWC (4-Bit-Net); the number of
multiply-accumulate operations is also significantly increased so that the overall LUT resource usage of
BaseBNN is almost the same as that of 4-Bit-Net. To address this issue, we propose HyBNN, where we binarize
depth-wise separation convolution (DSC) blocks for the first time to decrease the model size and incorporate
4-bit DSC blocks to compensate for the accuracy loss. For the ship detection task in synthetic aperture radar
imagery on the AMD-Xilinx ZCU102 FPGA, HyBNN achieves a detection accuracy of 94.8% and a detection
speed of 615 frames per second (FPS), which is 6.8× faster than FuseBNN+ (94.9% accuracy) and 2.7× faster than
4-Bit-Net (95.9% accuracy). For image classification on the CIFAR-10 dataset on the AMD-Xilinx Ultra96-V2
FPGA, HyBNN achieves 1.5× speedup and 0.7% better accuracy over SOTA FracBNN.
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1 INTRODUCTION
As an extreme model compression method, binary neural network (BNN) has recently presented a
promising opportunity for deep learning inferences on resource-constrained edge devices. Using
extreme data precision, i.e., 1-bit weight and 1-bit activation, BNN [4] not only significantly reduces
the network memory footprint, but also trades massive multiply-accumulate (MAC) operations for
much cheaper logical XNOR and population count (POPCNT) operations.

Despite BNN’s attractive hardware-friendly properties, simply quantizing floating-point to binary
representations for a BNN would damage its feature representation capability and lead to severe
accuracy loss. For instance, the early-stage BNN called XNOR-Net [22] only achieves 51.2% top-1
accuracy on ImageNet classification [5], which leaves an 18% accuracy gap to its floating-point
counterpart, ResNet-18 [9].

In the past few years, numerous studies have been carried out to narrow the accuracy gap between
BNN and its corresponding floating-point convolutional neural networks (CNN) using various
optimization strategies, including minimizing the quantization error, improving the network loss
function, and reducing the gradient error [2, 15, 16, 18, 21, 26, 27, 29, 30, 34]. Promisingly, the latest
ReActNet [15] and FracBNN [29] have achieved SOTA ResNet-18-level (69.4%) and MobileNetV2-
level (71.8%) top-1 accuracy on ImageNet classification, respectively. In this paper (detailed in
Section 2), we have adapted ReActNet [15] (called BaseBNN) for the ship detection task on synthetic
aperture radar (SAR) imagery and achieved 94.9% detection accuracy, very close to its floating-point
counterpart (96%).
Unfortunately, the accuracy improvements of these SOTA BNNs come at the cost of various

auxiliary floating-point (AFP) components and increased model size, which harms their hardware
efficiency when deployed on resource-constrained edge devices. The goal of this paper is to quan-
tify such hardware inefficiency in SOTA BNNs and further optimize the BNN hardware performance
with negligible accuracy loss.
Throughout this paper, we will mainly use our ReActNet-adapted BaseBNN for ship detection

on SAR imagery as a case study, due to its high detection accuracy and representativeness of SOTA
BNNs such as ReActNet and FracBNN. For the hardware efficiency analysis and optimization, we
implement an optimized dataflow-style accelerator architecture for BaseBNN—where all network
layers are streamlined on the FPGA chip, similar to SOTA BNN acceleration framework FINN [3, 25]
and ultra low-bit CNN acceleration framework OSCAR-RT [28]—on the AMD-Xilinx ZCU102
embedded FPGA platform. The detailed setup is given in Section 2.
Inefficiency of auxiliary floating-point (AFP) components and our FuseBNN solution

(Section 3): To boost the feature representation capability and thus the inference accuracy, SOTA
BNNs have incorporated a variety of AFP operators as summarized in Fig. 1 (a) and (b) (in Section 3.1),
including shortcut branch [16, 27], batch normalization (BatchNorm) [12, 21], biased parametric
rectified linear unit (BPReLU) [15, 30], and biased sign function (BSign) [15, 29]. As a result, the
entire BNN network works on floating-point operations except the binary convolution, which
leads to significant hardware performance overhead. Our experiments show that, on average, these
cascaded AFP components consume about 93% of DSPs, 46% of LUTs, and 62% of FFs, among the
total resource utilization of the BNN accelerator on the FPGA. For about half of the BNN layers,
they consume more than 93% of DSPs, 60% of LUTs, and 76% of FFs, significantly more than the
resources that the actual binary convolutions consume.
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To mitigate such hardware performance overhead, we propose FuseBNN, where we fuse those
AFP operators into one threshold unit that includes only one multiplication, three additions, and
several logical decisions. This is done via algorithmic transformations without hurting the accuracy.
However, due to the AFP shortcut branch, the computation of the current fused unit depends on
the intermediate floating-point result (e.g., from BPReLU) in the prior fused unit, thus preventing
the complete fusion of all AFP operations. To address this challenge, we make a slight change in
the network structure to connect the shortcut branch directly from the first BatchNorm operator in
the prior layer to the addition operator in the next layer and fuse the first BatchNorm operator into
the next layer (shown in Fig. 4(a)-(b) and Fig. 5, and detailed in Section 3.3). Lastly, we also quantize
the fused operators into 24-bit integer precision and implement them on the FPGA. Experimental
results show that FuseBNN slightly increases the model accuracy from 94.9% (BaseBNN) to 95%
and significantly reduces the AFP resource utilization down to an average of 59% of DSPs, 13% of
LUTs, and 16% of FFs.
Inefficiency of increased model size and our HyBNN solution (Section 4): In addition to

AFP components, another essential strategy in SOTA BNNs to improve the model accuracy is to
increase the scale of the binary convolution [2, 15, 27, 29]. Specifically, MobileNetV1 [10] is widely
adopted as the backbone network in SOTA BNNs such as ReActNet [15], FracBNN [29], and our
BaseBNN, due to its compact network structure. However, when MobileNetV1 is directly binarized
with the aforementioned AFP components, there is a significant accuracy drop. For example, in our
case study, the directly binarized MobileNetV1-SAR model (called BaseBNN-DWC) only achieves
88% detection accuracy, leaving a 8% accuracy gap to its floating-point counterpart. This is because
the binarization of the highly sparse depth-wise separable convolution (DSC) in MobileNetV1
seriously hurts its feature extraction capability.
To compensate for the accuracy loss, SOTA BNNs increase the scale of the binary convolution.

For example, ReActNet [15] and our BaseBNN replace the 3×3 depth-wise convolution (DWC)
in the DSC block with the 3×3 standard convolution (SC). This boosts the detection accuracy of
BaseBNN to 94.9%. Similarly, FracBNN [29] replaces the 3×3 DWC in the DSC block with a more
complex fractional 3×3 SC that consists of a base 3×3 SC and a conditional 3×3 SC. The adapted
FracBNN achieves 95.1% detection accuracy in our case study, uses the same amount of model
parameters but 1.5× more MAC operations than BaseBNN. This is why we choose to adapt our
BaseBNN based on ReActNet.

Unfortunately, such accuracy optimization also leads to the model size increase from two perspec-
tives. First, the model parameter size is increased by 6× from 0.15MB (BaseBNN-DWC) to 0.9MB
(BaseBNN), which is 2.25× larger than that of the 4-bit direct quantization with the original DWC
(4-Bit-Net: 0.4MB parameters, 95.9% accuracy). Second, the number of MAC operations is increased
by 8.5× from 2.5GOP (giga operations, BaseBNN-DWC and 4-Bit-Net) to 21.2GOP (BaseBNN).
Although each binary operation is much cheaper than a 4-bit operation, the overall LUT resource
usage of BaseBNN becomes almost the same as that of 4-Bit-Net. In summary, BaseBNN loses
its advantage over 4-Bit-Net.

To avoid this excessive increase in BNN model size, we propose HyBNN, where we use a hybrid
of FuseBNN-DWC+ blocks to keep the model size small with depth-wise convolution (and other
common optimizations) and 4-Bit-Net blocks to compensate the accuracy loss. For the first time,
we directly binarize the DSC blocks in the MobileNetV1 backbone to keep its compact model size.
To compensate for the accuracy loss, we use the 4-Bit-Net blocks—which are also quantized on
the original DSC blocks—to replace the early network layers. Via a design space exploration, we
find that, using 6 4-Bit-Net blocks in the upper network and 5 FuseBNN-DWC+ blocks in the
down network, our HyBNN-U6D5 achieves the best accuracy and performance tradeoff. Overall,
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HyBNN-U6D5 achieves a detection accuracy of 94.8% and a detection speed of 615 FPS, which is
6.8× faster than FuseBNN+ (94.9% accuracy) and 2.7× faster than 4-Bit-Net (95.9% accuracy).

Generality of our analysis and optimizations (Section 5): To validate the generality of our
analysis and optimizations, we also apply them to the image classification task on the CIFAR-10
dataset using a different BNN network, HyBNN-U5D3, and a different FPGA platform, AMD-
Xilinx Ultra96-V2 FPGA platform. Our HyBNN-U5D3 achieves 89.8% top-1 accuracy and 4,302 FPS
classification speed, which is 0.7% more accurate and 1.5× faster than SOTA FracBNN [29], both
running on the same AMD-Xilinx Ultra96-V2 FPGA platform.

In summary, this paper makes the following contributions:
• A quantitative evaluation of hardware inefficiency caused by auxiliary floating-point compo-
nents and increased model size in SOTA BNNs for compensating the accuracy.

• FuseBNN, a novel algorithm/hardware co-design to fuse AFP operators in BNNs without
hurting the accuracy.

• HyBNN, the first hybrid BNN (FuseBNN) and 4-Bit-Net design that directly binarizes (and
quantizes) the original DSC blocks to keep compact model size and high model accuracy.

• Experimental results to demonstrate superior hardware performance and promising model
accuracy of HyBNN for ship detection on SAR imagery (94.8% detection accuracy and 615
FPS on ZCU102 FPGA) and image classification on CIFAR-10 (89.8% top-1 accuracy and 4,302
FPS on Ultra96-V2 FPGA).

The rest of this paper is organized as follows. Section 2 illustrates the baseline BNN and detailed
experimental settings for our primary case study of SAR ship detection, serving as a starting point
for the quantitative evaluation of the algorithmic performance and hardware efficiency of SOTA
BNNs. Sections 3 and Sections 4 analyze the hardware inefficiency caused by AFP components and
increased model size, and provide our algorithm-hardware co-design solutions to address these
challenges. Section 5 evaluates the generalization of our proposed solutions on the CIFAR-10 image
classification task. Section 6 reviews related work on model design and FPGA acceleration of BNNs.
Finally, we conclude this paper in Section 7.

2 BASELINE BNN AND EXPERIMENTAL SETUP
2.1 Baseline BNN for Ship Object Detection in SAR Imagery
In this paper, we choose the ship detection task in SAR imagery as our major case study, where
BNN is able to achieve a high detection accuracy of 94.9%, which is much higher than that in
ImageNet classification (69.4% and 71.8% for SOTA ReActNet [15] and FracBNN [29]). To ensure
our analysis and optimizations for BNNs are representative for SOTA BNNs, we choose SOTA BNN
ReActNet [15] as our baseline and adapt it to achieve a high detection accuracy for SAR image ship
detection; the adapted ReActNet model is called BaseBNN. In Section 4.1, we will compare it to the
adapted version based on FracBNN [29] and explain why we use the ReActNet-based BaseBNN
throughout this paper.
In BaseBNN, the compact MobileNetV1 structure [10] is retained as the backbone. Shown in

Table 1, MobileNetV1 uses depth-wise separation convolution (DSC), which is composed of 3×3
depth-wise convolution (DWC) and point-wise convolution (i.e., 1×1 standard convolution (SC)).
Compared to the 3×3 SC, this reduces the computation by 8× to 9× while imposing minor impact
on accuracy. Note that we employ the model adapting strategy proposed in OSCAR-RT[28] to
adjust the number of channels and layers of the original MobileNetV1 to better detect small and
clustered ship targets in SAR imagery, called MobileNetV1-SAR. As listed in Table 1, in addition
to the input SC layer (the first row) and the output detection SC layer (the second last row), the
backbone of MobileNetV1-SAR is composed of 11 DSC blocks, where each DSC block includes a
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Table 1. Configuration of backbone network MobileNetV1-SAR. Each row describes a sequence of 𝑛 (last
column) repeated identical layers. The first column shows the input feature map size for each operator (second
column). 𝑐 and 𝑠 denote the number of output channels and stride of each operator.

Input Operator c s n
416×416×1 3×3 SC 32 2 1

208×208×32 DSC 3×3 DWC 32 1 1
1×1 SC 64 1

208×208×64 DSC 3×3 DWC 64 2 1
1×1 SC 128 1

104×104×128 DSC 3×3 DWC 128 1 1
1×1 SC 128 1

104×104×128 DSC 3×3 DWC 128 2 1
1×1 SC 256 1

52×52×256 DSC 3×3 DWC 256 1 5
1×1 SC 256 1

52×52×256 DSC 3×3 DWC 256 1 1
1×1 SC 512 1

52×52×512 DSC 3×3 DWC 512 1 1
1×1 SC 512 1

52×52×512 1×1 SC 25 1 1
52×52×25 detector - - -

3×3 DWC and a 1×1 SC. The detector (the last row) employs the YOLOv2 back-end which uses five
k-means clustering anchor boxes[23].

To compensate for the accuracy loss encountered by extreme data precision, each DSC block in
the BaseBNN backbone is replaced by a normal or downsample binary SC block shown in Fig. 1 (a)
and (b), depending on whether the numbers of input and output channels of the DSC block are
equal. First, both the normal and downsample SC blocks incorporate various AFP components,
which will be detailed and analyzed in Section 3. Second, both SC blocks replace the 3×3 DWC with
a 3×3 SC to increase the model size, which will be detailed and analyzed in Section 4. Moreover, for
the downsample SC block, similar to FracBNN [29], we replace the original activation duplicate in
ReActNet [15] with a channel duplicate to reduce the 1×1 SC computation. As shown in Table 2, the
final adapted BaseBNN achieves a high average precision of 94.9%, comparable to the corresponding
floating-point version MobileNet-SAR (96%) in our case study.

Table 2. Accuracy of ship detection on SAR image dataset SSDD.

Model AP (%)
MobileNetV1-SAR (floating-point) 96

BaseBNN 94.9

2.2 All On-Chip Dataflow-Style BNN Accelerator on FPGA
The extreme 1-bit weights and activations in BNNs facilitate the highly-efficient hardware imple-
mentation of all the network layers on-chip, thus eliminating the expensive off-chip data movement
between layers. Inspired by SOTA BNN accelerator design FINN [3, 25] and low-bit CNN acceler-
ator design OSCAR-RT [28], this paper implements all the studied networks on FPGA using the
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(a) Normal SC Block (b) Downsample SC Block
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Fig. 1. Basic binary standard convolution (SC) blocks in BaseBNN, which replaces each DSC block in
MobileNetV1-SAR (Table 1) with (a) or (b). When the numbers of input and output channels of the DSC block
are equal, the normal SC block is used; otherwise, the downsample SC block is used.

all-on-chip dataflow-style accelerator design, which maps all layers of the model to the FPGA chip
and executes all layers on-chip concurrently in the deeply pipelined streaming fashion. We leave
the detailed hardware implementation of each layer to Section 3.3.3 and 4.4.1. At a high level, for
each on-chip convolution layer, the parallelism unrolled on the input channel dimension of the
input feature map (𝐼𝑛𝑝) and the parallelism unrolled on the output channel dimension of the output
feature map (𝑂𝑢𝑝) can be flexibly configured by the interlayer matching strategy proposed in [28].
This fine-grained layer-by-layer customization allows us to set appropriate parallelism for layers of
different types and sizes to achieve the specified overall dataflow throughput.

2.3 Detailed Experimental Setup
Dataset. For our case study, we use the widely used SAR ship detection dataset (SSDD) constructed
by Li 𝑒𝑡 𝑎𝑙 . [13]. Each input image in SSDD is a resized grayscale SAR image with a size of 416×416.
The widely used average precision (AP) based on an intersection over union (IOU) of 0.5 is applied
to quantity the ship detection accuracy. The division of training set and test set in SSDD is the
same as that in [28].
Model training. We use Pytorch [20] to specify all models and training scripts on the Nvidia RTX
2080Ti and 3090 GPUs. Adam optimizer with a linear learning rate decay scheduler is used. The
initial learning rate of all models is set to 5𝑒−4. The batch size and number of epochs are 10 and
1000, respectively.
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For all BNN training, the standard two-step training strategy [18] is applied. First, the activation
is binarized while the weight remains floating-point. Next, the model is initialized by weights
obtained in step one, and the weights and activation are binarized. The training settings are identical
for both steps, except that the weight decay is 1𝑒−5 in step one and 0 in step two. For additional
4-Bit-Net, it inherits the floating-point weights of MobileNetV1-SAR to accelerate convergence and
adopts uniform quantization aware training [33] to reduce the precision of weight and activation to
4-bit. Note that prior studies have shown that no less than 4-bit quantization precision can achieve
comparable accuracy to floating-point models with appropriate training strategies [6, 24, 28].
Hardware setup. For hardware deployment and analysis, we implement the hardware accelerator
designs in AMD-Xilinx Vitis HLS and run them on the AMD-Xilinx ZCU102 embedded FPGA board.
The board has 274,080 LUTs, 548,160 FFs, 912 BRAMs, and 2,520 DSPs. The hardware architectures
are synthesized, implemented, and tested using AMD-Xilinx Vitis HLS, Vivado, and Vitis version
2020.2. Hardware resource utilization is obtained from the Vivado post-implementation report. All
the designs run at 300MHz unless otherwise specified.

3 ANALYSIS OF VARIOUS AUXILIARY FLOATING-POINT COMPONENTS AND OUR
SOLUTION FUSEBNN

3.1 Auxiliary Floating-Point (AFP) Components
Summarized in Fig. 1 (a) and (b), to improve BNN accuracy, various AFP components have been
incorporated into SOTA BNNs.
Shortcut branch. Since the extreme 1-bit precision inevitably shrinks the expression range of
data, the shortcut branch is proposed in Bi-Real Net [16] to connect and add the current 32-bit
activation to the activation of the following block to enhance the representation capability. Due to
its simplicity yet effectiveness, the shortcut branch and its variants have been widely adopted in
most SOTA BNNs[2, 11, 18, 27].
Batch normalization (BatchNorm). Prior work has demonstrated that BatchNorm [12] helps
BNNs smoothly improve convergence and generalization, from the theoretical and empirical
perspectives [17]. It can be described as follows:

𝑦 𝑗 = 𝑘 𝑗𝑥 𝑗 + 𝑏 𝑗 (1)

𝑘 𝑗 =
𝛾 𝑗√

| |𝜎2
𝑗+𝜀 | |

, 𝑏 𝑗 = 𝛽 𝑗 −
𝛾 𝑗 𝜇 𝑗√
| |𝜎2

𝑗+𝜀 | | (2)

𝑥 𝑗 and 𝑦 𝑗 denote the input and output of the 𝑗-th channel in BatchNorm layer. 𝜇 𝑗 and 𝜎 𝑗 are the
running mean and running variance required to normalize the output feature map. 𝛾 𝑗 and 𝛽 𝑗 are
the learning scale and shift parameters. Note that 𝑘 𝑗 and 𝑏 𝑗 can be pre-computed once a network is
trained.
Biased parametric rectified linear unit (BPReLU) and biased sign (Bsign). As the accuracy is
sensitive to the activation distribution variations, BPReLU and Bsign are proposed in ReActNet [15]
to adopt channel-wise reshaping and shifting to obtain a more enriched and subtle distribution of
the feature map in a learnable fashion. They are defined as:

𝐵𝑃𝑅𝑒𝐿𝑈 (𝑚 𝑗 ) =
{
𝑚 𝑗 + 𝜙 𝑗 + 𝜉 𝑗 if 𝑚 𝑗 > −𝜙j
𝜆 𝑗 (𝑚 𝑗 + 𝜙 𝑗 ) + 𝜉 𝑗 if 𝑚 𝑗 ≤ −𝜙j

(3)

where𝑚 𝑗 represents the input for BPReLU on the 𝑗-th channel. 𝜙 𝑗 and 𝜉 𝑗 are learning bias. 𝜆 𝑗 is a
learning coefficient that controls the slope of the negative part. Similarly, PokeBNN [30] employs a
variant of BPReLU—dynamic PReLU, which supplements the learnable slope for the positive part.
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Algorithm 1: Hardware implementation pseudocode for cascaded AFP components to
obtain the 1-bit output activation of one convolution layer
Input: the XNOR-POPCNT integer result of the previous convolution layer: 𝑖𝑛; the BPReLU

floating-point result form the shortcut branch: 𝑖𝑛_𝑠ℎ𝑜𝑟𝑡𝑐𝑢𝑡 ; the total number of
input pixels for one output activation: 𝑁

Output: the 1-bit output activation of the current convolution layer: 𝑟𝑒𝑠
// parameters for each layer, defined in Section 3.1
float 𝑘 , 𝑏, 𝜙 , 𝜆, 𝜉 , 𝜔 ;
// step 1: obtain the actual result of binary convolution after bitwise XNOR-POPCNT
operations
int 𝑠𝑐_𝑟𝑒𝑠 = 2 × 𝑖𝑛 − 𝑁 ;
// step 2: BatchNorm with Eq. (1)
float 𝑡𝑚𝑝 = 𝑘 × 𝑠𝑐_𝑟𝑒𝑠 + 𝑏;
// step 3: shortcut-add
𝑡𝑚𝑝 = 𝑡𝑚𝑝 + 𝑖𝑛_𝑠ℎ𝑜𝑟𝑡𝑐𝑢𝑡 ;
// step 4: BPReLU with Eq. (3)
𝑡𝑚𝑝 = 𝑡𝑚𝑝 + 𝜙 ;
if (𝑡𝑚𝑝 ≤ 0) 𝑡𝑚𝑝 = 𝑡𝑚𝑝 × 𝜆;
𝑡𝑚𝑝 = 𝑡𝑚𝑝 + 𝜉 ;
// step 5: Bsign with Eq. (4)
𝑡𝑚𝑝 = 𝑡𝑚𝑝 + 𝜔 ;
if (𝑡𝑚𝑝 ≤ 0) 𝑟𝑒𝑠 = 0;
else 𝑟𝑒𝑠 = 1;
return 𝑟𝑒𝑠;

𝑥𝑏𝑗 = 𝐵𝑠𝑖𝑔𝑛(𝑥𝑟𝑗 ) =
{ +1 if 𝑥𝑟𝑗 > −𝜔j
−1 if 𝑥𝑟𝑗 ≤ −𝜔j

(4)

where 𝑥𝑟𝑗 and 𝑥
𝑏
𝑗 are real-value input and binary output on the 𝑗-th channel. 𝜔 𝑗 is a learning bias

for the threshold.

3.2 Impact on Hardware Performance
As shown in Fig. 1 (a) and (b), these AFP components keep the entire BNN network working on
floating-point operations except the binary convolutions. To assess their actual hardware cost, we
implement them on FPGA using Vitis HLS [1]. Algorithm 1 shows the pseudocode to implement
the four cascaded AFP operators presented in Section 3.1. Similar to FINN [3, 25], the binary
convolutions are implemented using logic XNOR and POPCNT operations. After the intermediate
results (32-bit integer) are obtained from a binary convolution layer (step 1), it performs BatchNorm,
shortcut add, BPReLU, and Bsign (steps 2 to 5) all in floating-point, to get the final 1-bit output
activation. Eq. (2) is not calculated since 𝑘 𝑗 and 𝑏 𝑗 are pre-computed once a network is trained.
We call Algorithm 1 as a floating-point threshold unit (TU), which is integrated with each binary
convolution layer. Fig. 2 reports the FPGA resource consumption percentage of the floating-point
TUs in each binary convolution layer of BaseBNN (shown in Table 1, excluding the first and last
SC layer). On average, these floating-point TUs consume about 46% of LUTs, 62% of FFs, and 93%
of DSPs, among the entire BNN accelerator resource utilization. For about half of the layers, they
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(a)

before fusion after fusion

average: 93%

average: 59%

before fusion after fusion

average: 46%

average: 13%

before fusion after fusion

(b)

average: 16%

average: 62%

(c)

A
F

P
A

F
P

A
F

P

Fig. 2. Percentage of AFP component resource consumption in each convolution layer of BaseBNN’s (before
fusion) and FuseBNN’s (after fusion) binary SC blocks.

consume more than 60% of LUTs, 76% of FFs, and 93% of DSPs, significantly more than the resources
that those actual binary convolutions consume.

3.3 FuseBNN: AFP Component Fusion for BNN
To reduce the hardware resource usage of AFP components and reserve more resource for binary
convolutions, and thus to improve the overall BNN performance, we propose FuseBNN to fuse
those AFP components.

3.3.1 Challenges in AFP Component Fusion. In the widely used BNN acceleration framework
FINN [3, 25], it proposed a simple fusion technique to accelerate early-stage BNNs (with low
accuracy) that only include floating-point BatchNorm and sign operations, shown in Fig. 3.

The fused BatchNorm and sign equation is as follows:

𝑜𝑖, 𝑗 =

{
1 𝑖 𝑓 𝑎𝑖, 𝑗 > 𝑇𝑖, 𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 𝑇𝑖, 𝑗 = −
𝑏𝑖, 𝑗

2𝑘𝑖, 𝑗
+ 𝑁𝑖

2
(5)
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Fig. 3. Network structure (a) and hardware implementation (b), using a simple floating-point component
fusion technique, for binary convolution blocks in the early-stage BNNs (FINN [3, 25]) with low accuracy.

where 𝑜𝑖, 𝑗 denotes the 1-bit output activation on the 𝑗-th output channel of the 𝑖-th layer 𝐿𝑖 . 𝑎𝑖, 𝑗
indicates the intermediate binary convolution (i.e., XNOR and POPCNT) result. 𝑇𝑖, 𝑗 is called the
threshold value. 𝑁𝑖 denotes the total number of input activations (𝑜𝑖−1, 𝑗 ) required to calculate
one output activation. The definitions of 𝑘𝑖, 𝑗 and 𝑏𝑖, 𝑗 are described in Eq. (2). As 𝑁𝑖 , 𝑘𝑖, 𝑗 and 𝑏𝑖, 𝑗
are constant once a network is trained, 𝑇𝑖, 𝑗 can be pre-computed, which eliminates floating-point
operations.
As illustrated in Eq. (5), the unique sign function gives the early-stage BNNs an ingenious fusion

opportunity to obtain the binary output activation (𝑜𝑖, 𝑗 ) by a simple on-chip comparison between
the intermediate result of XNOR-POPCNT (𝑎𝑖, 𝑗 ) and the channel-wise threshold coefficient (𝑇𝑖, 𝑗 ).

However, this simple fusion strategy no longer works well in SOTA BNNs, due to the introduction of
the AFP shortcut branch for accuracy gains. Take our BaseBNN as an example, shown in Fig. 1(a), we
regard the part in the dotted box as a convolution layer. To obtain the binary output activation of the
current layer 𝑖 , it first needs to perform an floating-point addition between the current BatchNorm
and the result of BPReLU in layer 𝑖-1. Therefore, it is inevitable to perform the expensive floating-
point BPReLU computation in layer 𝑖-1 and buffer its result on-chip, thus losing the opportunity
of offline fusion with the Bsign function. Similarly, the floating-point shortcut branches in the
downsample SC block shown in Fig. 1(b) also impede efficient floating-point component fusion.

3.3.2 Hardware-Friendly Fusion Algorithm. To address the fusion challenge, we first make slight
changes in the binary SC blocks shown in Fig. 4(a) and (b), without hurting the accuracy. Specifically,
for the normal SC block, the starting position of the floating-point shortcut branch is moved to
right after the BatchNorm in the previous layer (the bold line in Fig 4(a)). Then all AFP components
in layer 𝑖 , together with the BatchNorm in layer 𝑖-1, in the yellow shadow box, are fused. The fusion
strategy is the same for layer 𝑖-1.

In the downsample SC block, the starting position of the floating-point shortcut branch in layer
𝑖 is moved to right after BatchNorm in layer 𝑖-1 (the bold line in Fig 4(b)). Moreover, we change
the shortcut branch in layer 𝑖-1 into an integer shortcut branch, by changing the input of AvgPool
(average pooling) from the BPReLU result to the 1×1 SC result and adding an integer BatchNorm
after AvgPool. Then, all AFP components in layer 𝑖 , together with AvgPool and two BatchNorms in
layer 𝑖-1, in the yellow shadow box, are fused. For fusion in layer 𝑖-1, we fuse all its AFP components
and there is no floating-point shortcut branch.
Next we explain how algorithmic transformations are done to fuse AFP components. For the

sake of simplicity, we take the updated normal SC block (the yellow shadow box of Fig 4(a)) as an
example for a detailed description. The downsample SC block can be derived in a similar way.

Assume 𝑎𝑖−1, 𝑗 and 𝑎𝑖, 𝑗 denote the XNOR-POPCNT results on the 𝑗-th output channel in the 𝑖-1-th
and 𝑖-th SC layers 𝐿𝑖−1 and 𝐿𝑖 . Firstly, the actual MAC result of the 1-bit SC in 𝐿𝑖−1 and 𝐿𝑖 , 𝑥𝑖−1, 𝑗
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Fig. 4. Our proposed FuseBNN with updated binary SC blocks to support hardware-friendly AFP component
fusion.

and 𝑥𝑖, 𝑗 , can be calculated as:

𝑥𝑖−1, 𝑗 = 2𝑎𝑖−1, 𝑗 − 𝑁𝑖−1, 𝑥𝑖, 𝑗 = 2𝑎𝑖, 𝑗 − 𝑁𝑖 (6)

where 𝑁𝑖−1 and 𝑁𝑖 denote the total number of input activations to calculate one output activation
for 𝐿𝑖−1 and 𝐿𝑖 .

Shown in Fig 4(a), the following AFP operators are then performed to obtain the binary output
activation 𝑜𝑖, 𝑗 for 𝐿𝑖 . All coefficients are defined in Eq. (1)-(4).

BatchNorm operator for 𝐿𝑖−1 and 𝐿𝑖 :

𝑦𝑖−1, 𝑗 = 𝑘𝑖−1, 𝑗𝑥𝑖−1, 𝑗 + 𝑏𝑖−1, 𝑗 , 𝑦𝑖, 𝑗 = 𝑘𝑖, 𝑗𝑥𝑖, 𝑗 + 𝑏𝑖, 𝑗 (7)

Point-wise shortcut branch addition operator for 𝐿𝑖 :

𝑠𝑖, 𝑗 = 𝑦𝑖−1, 𝑗 + 𝑦𝑖, 𝑗 (8)

BPReLU operator for 𝐿𝑖 :

𝑟𝑖, 𝑗 =

{
𝑠𝑖, 𝑗 + 𝜙𝑖, 𝑗 + 𝜉𝑖, 𝑗 if si,j > −𝜙i,j
𝜆𝑖, 𝑗 (𝑠𝑖, 𝑗 + 𝜙𝑖, 𝑗 ) + 𝜉𝑖, 𝑗 if si,j ≤ −𝜙i,j

(9)
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BSign operator for 𝐿𝑖 :

𝑜𝑖, 𝑗 =

{
+1 if ri,j > −𝜔i,j
−1 if ri,j ≤ −𝜔i,j

(10)

Benefiting from the aforementioned network changes, we can fuse Eq. (6)-(10) into:

𝑜𝑖, 𝑗 =

{
1 if ((cond1&cond2) | (cond3&cond4))
0 otherwise (11)

cond1 : ai,j > 𝜂i,jai−1,j + 𝜃1i,j
cond2 : ai,j > 𝜂i,jai−1,j + 𝜃2i,j
cond3 : ai,j ≤ 𝜂i,jai−1,j + 𝜃1i,j
cond4 : ai,j > 𝜂i,jai−1,j + 𝜃3i,j

(12)

where 𝜂𝑖, 𝑗 , 𝜃1𝑖,𝑗 , 𝜃2𝑖,𝑗 and 𝜃3𝑖,𝑗 are four constant coefficients and can be pre-computed as:

𝜂𝑖, 𝑗 = −𝑘𝑖−1, 𝑗
𝑘𝑖,𝑗

𝜃1𝑖,𝑗 =
𝑁𝑖,𝑗

2 + 𝑘𝑖−1, 𝑗𝑁𝑖−1, 𝑗−𝑏𝑖−1, 𝑗−𝑏𝑖,𝑗−𝜙𝑖,𝑗

2𝑘𝑖,𝑗
𝜃2𝑖,𝑗 =

𝑁𝑖,𝑗

2 + 𝑘𝑖−1, 𝑗𝑁𝑖−1, 𝑗−𝑏𝑖−1, 𝑗−𝑏𝑖,𝑗−𝜙𝑖,𝑗−𝜉𝑖,𝑗−𝜔𝑖,𝑗

2𝑘𝑖,𝑗
𝜃3𝑖,𝑗 =

𝑁𝑖,𝑗

2 + 𝑘𝑖−1, 𝑗𝑁𝑖−1, 𝑗−𝑏𝑖−1, 𝑗−𝑏𝑖,𝑗−𝜙𝑖,𝑗

2𝑘𝑖,𝑗 − 𝜉𝑖,𝑗+𝜔𝑖,𝑗

2𝜆𝑖,𝑗𝑘𝑖,𝑗

(13)

Note that the signs of 𝑘𝑖, 𝑗 and 𝜆𝑖, 𝑗 are assumed to be positive, and the negative sign case can be
similarly deduced.
As shown in Eq. (11) and (12), after the fusion, to get the binary output activation 𝑜𝑖, 𝑗 , we only

need two variables 𝑎𝑖−1, 𝑗 and 𝑎𝑖, 𝑗 , i.e., the XNOR-PONCNT results from the prior and current
SC layers; all other coefficients 𝜂𝑖, 𝑗 , 𝜃1𝑖,𝑗 , 𝜃2𝑖,𝑗 and 𝜃3𝑖,𝑗 are pre-computed constants for a network.
Moreover, we quantize all these floating-point numbers into 24-bit integers to further reduce their
resource usage.

3.3.3 Hardware Implementation of Fused Threshold Unit. Fig. 5 describes the detailed hardware
structure of the normal SC block on FPGA after fusion; the hardware structure of the downsample SC
block is similar and omitted. Similar to FINN [3, 25], the 3×3 SC and 1×1 SC are implemented using
XNOR-POPCNT; their results are buffered as inputs for the fused threshold unit (TU, highlighted
in the yellow box of Fig. 5 (b)), which implements Eq. (11) and (12). All data use 24-bit integer
precision by shifting 𝑎𝑖, 𝑗 and pre-shifting all constant coefficients in Eq. (13). The proposed TU
only needs one multiplication (for 𝜂𝑖, 𝑗 × 𝑎𝑖−1, 𝑗 ), three additions (addition with 𝜃1𝑖,𝑗 , 𝜃2𝑖,𝑗 , 𝜃3𝑖,𝑗 ), and
several logical decisions, all in integer precision.

3.4 Accuracy and Hardware Performance of FuseBNN
Accuracy of FuseBNN.Our FuseBNN does not hurt the accuracy and actually slightly increases the
accuracy from 94.9% (in BaseBNN) to 95%. This is because FuseBNN still retains all AFP components
to enrich the expression of the binary network.
Hardware resource of single TU. As shown in Table 3, the DSPs, FFs and LUTs consumed by
our fused TU are reduced by 5×, 20.5× and 6.5× compared to the one before fusion.

Table 3. Resource utilization of one threshold unit (TU) before and after AFP component fusion on ZCU102
with 300MHz clock frequency.

Threshold Unit DSP FF LUT
Before fusion 5 820 517
After fusion 1 40 80
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Fig. 5. Hardware implementation of the normal SC block in FuseBNN.

Hardware resource % of fused TU in each SC layer. Fig. 2 shows the percentage of LUTs, FFs
and DSPs consumed by our fused TU in each SC layer of FuseBNN. Compared with BaseBNN, on
average, these percentage numbers are significantly reduced down to 13%, 16% and 59%.

4 ANALYSIS OF INCREASED MODEL SIZE AND OUR SOLUTION HYBNN
4.1 Model Size Evaluation of SOTA BNNs
Another essential strategy to compensate for the accuracy loss caused by binary representations is
to increase the BNNmodel size. In general, the compact MobileNetV1 is widely used as the backbone
in SOTA BNNs, such as ReActNet [15], FracBNN [29], and our BaseBNN. Since MobileNetV1 uses
the compact depth-wise separable convolution (DSC) block, which is composed of 3×3 depth-wise
convolution (DWC) and 1×1 standard convolution (SC), it requires 8× to 9× less computation
than one 3×3 SC. However, as shown in Fig. 6, if we apply direct binarization to the compact
MobileNetV1-SAR with the 3×3 DWC in the DSC block (called BaseBNN-DWC), the detection
accuracy drops to 88%.
To improve the accuracy, similar to ReActNet [15], the basic binary SC blocks in BaseBNN

replaces the 3×3 DWC with the 3×3 SC to increase the model size, as shown in Fig. 1 and discussed
in Section 2.1. Compared with BaseBNN-DWC, BaseBNN improves the accuracy by 6.9% to 94.9%;
However, it also increases the number of operations (GOP) and parameter size (MB) by 8.5× and
6×, shown in Fig. 6.
Comparison to FracBNN [29]. Similarly, FracBNN replaces the 3×3 DWC with a more complex
fractional 3×3 SC that consists of a base 3×3 SC and a conditional 3×3 SC; it also replaces the 1×1
SC with a fractional 1×1 SC. As a result, FracBNN brings the detection accuracy to 95.1%, slightly
higher than 94.9% of BaseBNN. However, FracBNN requires 1.5× more operations than BaseBNN.
This is why we choose to adapt our BaseBNN based on ReActNet for our case study.
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#1:95.1%-W1A1.4-31.1GOP-0.9MB

#2:94.9%-W1A1-21.2GOP-0.9MB

#3:88%-W1A1-2.5GOP-0.15MB

#4:94.9%-W1A1-21.6GOP-0.9MB

#5:87.3%-W1A1-2.9GOP-0.11MB

#6:94.8%-Hybrid-2.5GOP-0.19MB

#7:95.9%-W4A4-2.5GOP-0.4MB

#8:96%-WFAF-2.5GOP-3.3MB

Fig. 6. Accuracy, operation number (GOP, giga multiply-accumulate operations, not considering bit-width)
and parameter size (MB) comparison for different models. For example, 94.9%-W1A1-21.2GOP-0.9MB for
BaseBNN denotes 94.9% accuracy, 1-bit weight and 1-bit activation, 21.2GOP, and 0.9MB parameters. WFAF
denotes 32-bit floating-point weight and activation.

Losing advantage over 4-Bit-Net. Unfortunately, due to the model size increase, the model
parameter size of BaseBNN (0.9MB), is actually 2.25× larger than that of the 4-bit direct quantization
with the original DWC (called 4-Bit-Net in Fig. 6: 0.4MB parameters, 95.9% accuracy). Moreover,
the number of operations for BaseBNN (21.2GOP) is 8.5× larger than that of 4-Bit-Net (2.5GOP).
Although each binary operation is much cheaper than a 4-bit operation, we will show in Section 4.2
that the overall LUT resource usage of FuseBNN (even more optimized than BaseBNN) is almost
the same as that of 4-Bit-Net. Such observations remain almost the same when we compare the
more optimized FuseBNN+ (defined in Section 4.2, plotted in Fig. 6) over 4-Bit-Net.

4.2 Impact of Model Size on Accuracy and Hardware Performance with Common
Hardware-Friendly Optimizations

To address the model size increase issue in SOTA BNNs, we first apply several widely used (mi-
nor) model size optimizations on top of our FuseBNN presented in Section 3, for the sake of
comprehensiveness. Fig. 7 and 8 shown their impact on the accuracy and hardware resource.
(1) Quantization of the input and detection convolution layers: Prior studies find that the bit-

width of the first input and the last detection convolution layers is more sensitive to the
detection accuracy of BNNs [22]. Their direct binarization brings a dramatic accuracy drop.
Instead, they can be quantified from floating-point to 8-bit integer without accuracy loss (so
we still call it FuseBNN, 95% accuracy in Fig. 7).

(2) Binarization of the input layer (BI): To simplify the structure of the first input layer and
binarize it, FracBNN proposes a thermometer encoding-based strategy [29]. We use the same
strategy to expand the single-channel grayscale SAR image to 32 binary channels. This
slightly reduces the BRAM and DSP usage by 0.3% and 0.2%, while slightly decreases the
accuracy to 94.9%, shown as FuseBNN-BI.

(3) Replacement of average pooling with max pooling (MP): This is a common hardware-friendly
strategy to avoid the addition and division involved in the window averaging operation.
Unfortunately, this results in a 0.3% accuracy drop with minor resource consumption reduc-
tion, shown as FuseBNN-BI-MP in Fig. 7 and 8. This is because our proposed fusion strategy
transfers the division involved in the average pooling to the coefficient calculated offline.
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Fig. 7. Accuracy impact of common model size optimizations on FuseBNN.
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Fig. 8. Resource impact of several common model size optimizations described in Fig. 7, assuming all models
have similar inference performance.

In the rest of this paper, we retain two effective optimizations for FuseBNN, i.e., the binarization
of the input layer and the 8-bit quantization of the last detection layer, and refer this optimized
model FuseBNN-BI as FuseBNN+ in Fig. 7.
FuseBNN+ vs. 4-Bit-Net. As shown in Fig. 6, FuseBNN+ (94.9% accuracy) has 21.6GOP and
0.9MB parameter size, which are 8.6× and 2.25× larger than those of 4-Bit-Net (95.9% accuracy),
respectively. Note that FuseBNN+ has a slightly higher GOP than BaseBNN due to the slight
network change presented in Section 3.3.2; however, it uses much less hardware resource than
BaseBNN as presented in Section 3.4. As shown in Fig. 8(a) and Fig. 8(d), due to the increased model
size, FuseBNN+ consumes 88.8% BRAMs and 44.6% LUTs of the entire FPGA, which uses 1.8× more
BRAMs and almost the same amount of LUTs than 4-Bit-Net.
Comparison to FuseBNN-DWC+. Finally, we also compare with FuseBNN-DWC+, whose only
difference to FuseBNN+ is that it directly binarizes the 3×3 DWC in the DSC blocks without
increasing the model size. Shown in Fig. 6, the drawback is that FuseBNN-DWC+ drops the
accuracy to 87.3%; but, it has a much smaller model size of 2.9GOP and 0.11MB parameter size.
Shown in Fig. 8, FuseBNN-DWC+ uses significantly less resource than FuseBNN+ and 4-Bit-Net.
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4.3 HyBNN: Hybrid FuseBNN-DWC+ and 4-Bit-Net Depth-Wise Separable Convolution
(DSC) Blocks

Considering the tradeoff of detection accuracy and resource overhead betwween FuseBNN+,
FuseBNN-DWC+, and 4-Bit-Net, we propose HyBNN, where we use a hybrid of binary DSC blocks
in FuseBNN-DWC+ to decrease model size and 4-bit DSC blocks in 4-Bit-Net to compensate for
accuracy loss. Shown in Fig. 9, we replace the bottom𝐷 number of DSC blocks in MobileNetV1-SAR
(in Table 1) with FuseBNN-DWC+ DSC blocks, and replace the up𝑈 number of DSC blocks with
4-Bit-Net DSC blocks. Q-Activation in the 4-bit DSC block indicates that the activation function,
i.e., ReLU, is uniformly quantified by 4-bit. Potentially, a higher𝑈 leads to a higher accuracy, but a
higher resource utilization and thus a lower inference throughput.

4.4 Accuracy and Hardware Performance of HyBNN
4.4.1 Hardware Implementation of HyBNN Blocks. Based on the all-on-chip dataflow-style hard-
ware architecture described in Section 2.2, here we implement the primitive HyBNN blocks with
configurable parameters, which can reused for different layers by simply configuring the block
parameters to enable fast deployment of HyBNN on a target FPGA.

For the 4-bit DSC block, we use similar hardware blocks as those proposed in [28], including two
major configurable blocks: the matrix-vector-activation unit (MVAU) for DWC layer (D-MVAU)
shown in Fig. 10(a) and the MVAU for SC layer (S-MVAU) shown in Fig. 10(d). Both D-MVAU and
S-MVAU have 𝛼 number of PEs (processing elements). Each PE has 𝛽 number of PUs (parallel units
in D-MVAU) or OPUs (output parallel units in S-MVAU), one non-linear unit (NLU, i.e., merged
BatchNorm and Q-Activation for 4-bit DSC block), one DownSizer and Upsizer to address the
rate-mismatch problem between PUs/OPUs and the NLU.
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(a) Hardware structure of D-MVAU

(b) PU for 4-bit DWC

(c) PU for 1-bit DWC

(e) OPU for 4-bit SC

(f) OPU for 1-bit SC(d) Hardware structure of S-MVAU
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Fig. 10. Major HyBNN hardware blocks: D-MVAU (Matrix-Vector-Activation Unit for DWC) and S-MVAU
(MVAU for SC). 𝐼𝑛𝑝 and 𝑂𝑢𝑝 denote the input channel parallelism for input feature map and the output
channel parallelism for output feature map, which can be customized for each HyBNN layer.

Fig. 11. Accuracy of different𝑈 and 𝐷 settings for HyBNN on SAR imagery.

Both D-MVAU and S-MVAU have an input channel parallelism 𝐼𝑛𝑝 for the input feature map and
an output channel parallelism 𝑂𝑢𝑝 for the output feature map, where 𝑂𝑢𝑝 = 𝛼 × 𝛽 . For D-MVAU
that performs DWC, shown in Fig. 10(a), 𝐼𝑛𝑝 = 𝑂𝑢𝑝 = 𝛼 × 𝛽 and each PU works on one multiply,
shown in Fig. 10(b). For S-MVAU that performs SC, shown in Fig. 10(d), 𝐼𝑛𝑝 ≠ 𝑂𝑢𝑝 and 𝐼𝑛𝑝 input
neurons are broadcast to each OPU. Each OPU processes 𝐼𝑛𝑝 inputs in parallel with 𝐼𝑛𝑝 multipliers
and an adder tree, shown in Fig. 10(e). Both PU and OPU need an accumulator to accumulate partial
results, as shown in Fig. 10(b) and 10(e), since both D-MVAU and S-MVAU are able to process a
part of the inputs on hardware at a time. We refer interested audience to [28] for more details.
For the FuseBNN-DWC+ DSC block, the D-MVAU and S-MVAU are reused by redesigning PU,

OPU and NLU. Shown in Fig. 10(c) and 10(f), the multipliers and the adder tree involved in the PU
and OPU are replaced by simple XNOR gates and the POPCNT tree. Moreover, the NLU is updated
to our fused threshold unit presented in Section 3.3.3.

A different instance of D-MVAUor S-MVAU can be easily customized for each layer by configuring
its 𝐼𝑛𝑝 and𝑂𝑢𝑝 , following the interlayer matching strategy in [28]. Moreover, the separation design
of PU/OPU and NLU has a high flexibility for extension of different AFP components.

4.4.2 Results for Model Accuracy. Fig. 11 presents the detection accuracy of HyBNN under different
𝑈 and 𝐷 settings, where 𝑈 + 𝐷 = 11, since there are 11 DSC blocks in the backbone network as
listed in the last column of Table 1. Even when𝑈 = 3, i.e., three 4-bit DSC blocks are integrated into
HyBNN, the accuracy of HyBNN-U3D8 (91.1%) becomes 3.8% higher than that of FuseBNN-DWC+.
When𝑈 gets larger, the accuracy gets higher. When𝑈 = 6, the accuracy of HyBNN-U6D5 increases
to 94.8%, very close the that of FuseBNN+ (94.9%). Further increasing𝑈 to 7 and 8 gets marginal
accuracy improvement (94.8% and 95.1% accuracy, respectively). Considering that increasing 𝑈
also adds more hardware resource overhead, we choose HyBNN-U6D5 for the final hardware
deployment on board.
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Table 4. Overall performance, resource utilization, and accuracy comparison for ship detection on AMD-Xilinx
ZCU102 FPGA with 300MHz.

Model AP
(%)

Resource Cost Peak FPS FPS/BRAM FPS/DSP FPS/kLUTs
BRAM DSP FF LUT

BaseBNN 94.9 1,032.5
(113.2%)

1,146
(45.5%)

472,534
(86.2%)

399,544
(145.8%)

failed - - -

FuseBNN+ 94.9 810
(88.8%)

162
(6.4%)

168,688
(30.8%)

122,129
(44.6%)

90 0.11 0.56 0.74

4-Bit-Net*
(250MHz)

95.9 466
(51.1%)

1,997
(79.2%)

367,112
(67.0%)

192,157
(70.1%)

230 0.49 0.12 1.20

HyBNN-U6D5 94.8 555
(60.9%)

1,662
(66.0%)

276,583
(50.5%)

152,687
(55.7%)

615 1.11 0.37 4.03

4.4.3 Results for Model Size. Shown in Fig. 6, HyBNN-U6D5 has a parameter size of 0.19MB, which
is 4.7× smaller than that of FuseBNN+ (0.9MB) and 2.1× smaller than that of 4-Bit-Net (0.4MB).
Moreover, it has 2.5GOP, the same as 4-Bit-Net, since all DSC blocks are retained; this is 8.6×
smaller than that of FuseBNN+ (21.6GOP).

4.4.4 Results for Final Hardware Performance. Table 4 compares the peak inference FPS (frames
per second), resource utilization, and FPS per resource utilization, as well as accuracy, between
BaseBNN, FuseBNN+, 4-Bit-Net, and HyBNN-U6D5. FPS measures the model inference throughput
on FPGA with a batch size of 25. All designs are run on the AMD-Xilinx embedded ZCU102 FPGA
platform at 300MHz, except 4-Bit-Net that is only able to run at 250MHz.

(1) BaseBNN without our optimizations has heavy LUT and BRAM consumption which goes
beyond the total amount of resources. Therefore, it cannot be deployed on the FPGA.

(2) FuseBNN+, with our AFP component fusion, achieves 90 FPS. It dramatically reduces the
DSP, FF, and LUT usage compared to BaseBNN, thanks to our fusion optimization. However,
its performance is bottlenecked by the BRAM resource consumption (88.8%).

(3) 4-Bit-Net achieves 230 FPS, which is 2.6× faster than FuseBNN+, due to the increased model
size of FuseBNN+.

(4) HyBNN-U6D5 achieves 615 FPS, which is 6.8× faster than FuseBNN+ and 2.7× faster than
4-Bit-Net. It has a detection accuracy of 94.8%, which is very close to that of BaseBNN and
FuseBNN+ (94.9%) and only 1.1% lower than that of 4-Bit-Net (95.9%). It enjoys not only
the benefits of small model size, simple XNOR-POPCNT operations, and AFP component
fusion from FuseBNN-DWC+, but also the accuracy compensation from 4-Bit-Net. Compared
with 4-Bit-Net, HyBNN-U6D5 also has 2.3×, 3.1×, and 3.4× higher FPS/BRAM, FPS/DSP,
FPS/kLUTs efficiency.

5 GENERALIZATION STUDY ON CIFAR-10
To validate the generality of our approach, we further apply it to image classification on the CIFAR-
10 dataset using a MobileNetV1-like backbone with 8 DSC blocks (𝑈 + 𝐷 = 8) summarized in Table
5. All model training settings are the same as those described in Section 2.3, except that the number
of epochs and batch size are adjusted to 300 and 128.
Results for model accuracy. Shown in Fig. 12, our FuseBNN achieves 90% top-1 accuracy, slightly
(0.2%) higher than BaseBNN. Compared with FuseBNN-DWC+ (77.5%), introducing three 4-bit
DSC blocks (HyBNN-U3D5: 87.7%) brings a significant accuracy gain of 10.2%. With five 4-bit DSC
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Table 5. Configuration of backbone network MobileNetV1-CIFAR-10.

Input Operator c s n
32×32×3 SC 3×3 32 1 -

32×32×32 DWC 3×3 32 1 1
SC 1×1 64 1

32×32×64 DWC 3×3 64 2 1
SC 1×1 128 1

16×16×128 DWC 3×3 128 1 2
SC 1×1 128 1

16×16×128 DWC 3×3 128 2 1
SC 1×1 256 1

8×8×256 DWC 3×3 256 1 3
SC 1×1 256 1

8×8×256 Max_Pool 256 - 3
1×1×256 FC 10 - -
1×1×10 Softmax - - -

Fig. 12. Accuracy of different𝑈 and 𝐷 settings for HyBNN on CIFAR-10.

Table 6. Operation number (GOP, not considering bit-width), parameter size (MB) and accuracy comparison
for image classification on CIFAR-10.

Model Param
(MB)

GOP Top-1
(%)

BaseBNN 0.32 0.25 89.8
FuseBNN 90

FuseBNN-DWC+ 0.04
0.03

77.5
HyBNN-U5D3 0.07 89.8

4-Bit-Net 0.14 90.1
FracBNN[29] 0.03 0.07 89.1

blocks, the accuracy of HyBNN-U5D3 rises to the BaseBNN level (89.8%), which is only 0.3% lower
than 4-Bit-Net.
Results for model size. Shown in Table 6, the parameter size of HyBNN-U5D3 is 0.07MB, 4.6×
and 2× smaller than that of FuseBNN and 4-Bit-Net. Its number of MAC operations is 0.03GOP, the
same as that of FuseBNN-DWC+ and 4-Bit-Net but 8.3× smaller than that of FuseBNN.
Comparison to FracBNN [29]. Compared to SOTA FracBNN that uses ResNet-20 as its back-
bone [29], our HyBNN-U5D3 achieves an accuracy gain of 0.7% and a 2.3× GOP reduction, shown
in Table 6. Summarized in Table 7, running on the same AMD-Xilinx Ultra96-V2 FPGA, our HyBNN-
U5D3 design (300MHz) achieves 4,302 FPS, which is 1.5× faster than FracBNN (250MHz). Moreover,
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Table 7. Overall performance, resource utilization, and accuracy comparison for CIFAR10 classification on
AMD-Xilinx Ultra96-V2 FPGA.

Model Top-1
(%)

Freq
(MHz)

Resource Utilization Peak FPSFPS/BRAMFPS/DSPFPS/kLUTs
BRAM DSP FF LUT

HyBNN-U5D3 89.8 300
94.5

(43.8%)
205

(56.9%)
99,074
(70.2%)

51,927
(73.6%)

4302 45.5 21 82.8

FracBNN[29] 89.1 250 212
(98.1%)

126
(35%)

39,618
(28.1%)

51,444
(72.9%)

2806 13.2 22.3 54.5

65.8

65.4

Fig. 13. Top-1 ImageNet classification accuracy of representative BNNs.

HyBNN-U5D6 achieves 1.5× and 3.4× higher FPS/kLUTs and FPS/BRAM efficiency. Such gains
mainly come from the GOP reduction and the all on-chip dataflow accelerator design in HyBNN.

6 RELATEDWORK
6.1 Recent Advances of Binary Neutral Networks
Fig. 13 illustrates the recent development of representative BNNs for the well-known ImageNet
classification task over the past few years. The early-stage representative BNN XNOR-Net [22]
demonstrated that the binarization of the weight and activation enjoys 32× memory savings and
58× convolution speedup on CPU. It also introduced the real-value scaling factor for the weight and
activation to compensate for the information loss. However, it only achieved 51.2% top-1 accuracy
on the ImageNet dataset, due to the naive straight-through structure illustrated earlier in Fig. 3(a).
In recent years, considerable efforts have been made to gradually narrow the accuracy gap [2,

15, 16, 18, 26, 27, 29, 30, 34]. Bi-RealNet [16] supplemented XNOR-Net with identity shortcuts
to maintain the continuous propagation of floating-point information, which further increased
top-1 accuracy to 56.4%. Due to the low theoretical computational complexity, this floating-point
shortcut or more complex improved versions can often be found in later BNN designs. For instance,
Real-to-Binary Net [18] used 32-bit channel-wise scale factors calculated by real-value activations
of the previous layer before binarization to rescale the output of the current binary convolution. As
a result, richer floating-point branch information improved the Real-to-Binary Net accuracy by
9% over Bi-RealNet. In MeliusNet [2], a binary variant of the DenseNet structure [11], the dense
block concatenated the current 32-bit input feature map with the new features calculated by binary
convolution to increase feature capacity. Furthermore, it enhanced the feature quality by adding
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additional 32-bit residual connections on the dense block. Such customized block design improved
the accuracy of MeliusNet to 65.8%, 0.4% higher than Real-to-Binary Net.
More recently, ReActNet[15] reached ResNet-18-level accuracy, i.e., 69.4%, for the first time,

which is considered as one of the SOTA BNNs. This was achieved by using two major optimizations.
First, ReActNet increased the model size of the backbone network MobileNetV1 by replacing the
DWC with the SC. Second, in addition to the widely used floating-point identify shortcut, ReActNet
introduced BPReLU and Bsign functions to adjust the activation distribution in the model to learn
more representative features.
FracBNN [29] is another SOTA BNN, which achieved a groundbreaking MobileNetV2-level

accuracy of 71.8% for ImageNet classfication. Its core innovation is to replace ReActNet’s binary
SC with a more complex fractional SC with higher MAC operations. More precisely, it used the
precision gating strategy[31] to calculate 2-bit activations and split a 2-bit activation into the
high-bit activation (HBA) and the low-bit activation (LBA). In the base phase, it performs a regular
binary SC using HBA. In a conditional updating phase (based on a learnable threshold), it performs
an additional binary SC using LBA.
In this paper, we choose SOTA BNN ReActNet as our baseline and adapt it to BaseBNN for our

case study; we explained why we did not choose FracBNN in Section 4.1. All of our analysis and
optimizations also apply to FracBNN.

6.2 FPGA Acceleration for Binary Neural Networks
Due to the hardware-friendly features of BNNs, there are also an active body of research studies [3,
7, 8, 14, 19, 25, 32] to accelerate BNNs on the FPGA. Indeed, the early study in [19] showed the
superior efficiency of BNN acceleration on FPGA than that on CPU and GPU. Among them, one of
the most representative efforts is FINN [3, 25], which provided an automation framework for fast
deployment of the early-stage BNN on FPGA and implemented an all-on-chip dataflow-style BNN
inference accelerator (this inspired our accelerator design). Inherited from FINN’s hardware design,
ReBNet[7] employed multi-level residual binary convolutions to improve the accuracy, which is
still below 42% though.
Besides FINN, Zhao et al. [32] introduced a BitSel module and variable-width line buffers to

accelerate the inference of early-stage BNNs on FPGA. FP-BNN [14] only binarized the weights in
the network. FBNA [8] binarized all network layers, including the first and last layers, but only
targeted very small datasets such as SVHN and CIFAR-10.
Noted that all these aforementioned efforts accelerated early-stage BNNs that achieved low

accuracy for ImageNet classification (if supported) and did not support complex AFP components
discussed in this paper. The only exception is the recent FracBNN[29] that we compared to in
Section 5: our HyBNN-U5D3 on CIFAR-10 dataset achieved higher clock frequency and throughput
on the same FPGA, higher FPS/BRAM and FPS/kLUTs efficiency, and better top-1 accuracy.
Summary: Different to all prior studies, this is the first study to quantify and mitigate the hardware
inefficiency in SOTA BNNs caused by various AFP components and increased model size for
compensating the accuracy loss.

7 CONCLUSION AND FUTUREWORK
This work is the first to quantify and mitigate the hardware inefficiency in SOTA BNNs, which
are mainly caused by various AFP components and increased model size that were proposed
for accuracy gains. To eliminate the hardware overhead caused by AFP components without
accuracy loss, we have proposed a novel algorithm/hardware co-design called FuseBNN to fuse
cascaded AFP components. To alleviate the hardware inefficiency caused by increased model size,
we have proposed HyBNN, where we use a hybrid of FuseBNN-DWC+ DSC blocks to keep compact
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model size and 4-Bit-Net DSC blocks to compensate the accuracy loss. Experimental results have
demonstrated promising accuracy and superior hardware performance of HyBNN for SAR ship
detection (94.8% detection accuracy and 615 FPS on AMD/Xilinx ZCU102 FPGA) and CIFAR-10
classification (89.8% top-1 accuracy and 4,302 FPS on AMD/Xilinx Ultra96-V2 FPGA) on two FPGA
platforms. We plan to explore more SOTA BNNs, datasets, and FPGAs in future work.
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